Publications

Search
Show only items where
Found 1087 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
X
Xu X, Elias DA, Graham DE, Phelps TJ, Carroll SL, Wullschleger SD, Thornton PE.  2015.  A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil. Journal of Geophysical Research: Biogeosciences. 120(7):1315-1333.
Xu X, Thornton PE, Post WM.  2013.  A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography. 22(6):737-749.
Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG.  2012.  Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics. PLoS ONE. 7(5):e37914.
Xu X, Thornton PE, Post WM.  2012.  A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography. :n/a-n/a.
Xu Y, Wang D, Iversen CM, Walker A, Warren J.  2017.  Building a Virtual Ecosystem Dynamic Model for Root Research. Environmental Modelling & Software. 89:97-105.
Xu X, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H.  2016.  Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences. 13(12):3735-3755.
Xu X, Goswami S, Gulledge J, Wullschleger SD, Thornton PE.  2016.  Interdisciplinary research in climate and energy sciences. Wiley Interdisciplinary Reviews: Energy and Environment. 5(1):49-56.
Xu X, Schimel JP, Thornton PE, Song X, Yuan F, Goswami S.  2014.  Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecology Letters. 17(5):547-555.
Xu X, Hui D, King AW, Song X, Thornton PE, Zhang L.  2015.  Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Scientific Reports. 5:17445.
Xu X, Goswami S, Gulledge J, Wullschleger SD, Thornton PE.  2015.  Interdisciplinary research in climate and energy sciences. Wiley Interdisciplinary Reviews: Energy and Environment. :n/a-n/a.
Xu X, Schimel JP, Janssens IA, Song X, Song C, Yu G, Sinsabaugh RL, Tang D, Zhang X, Thornton P.E.  2017.  Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs. 873252298143604408820103353132748116253296051321198332824951112784858335223816862712844241176352377732612051722(33):429-441.
Xie J, Zha T, Zhou C, Jia X, Yu H, Yang B, Chen J, Zhang F, Wang B, BOURQUE CHARLESP-A et al..  2016.  Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought. Agricultural and Forest Meteorology. 221:142-151.
Xie J, Chen J, Sun G, Zha T, Yang B, Chu H, Liu J, Wan S, Zhou C, Ma H et al..  2016.  Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate. Agricultural and Forest Meteorology. 218-219:209-217.
Xiao J, Zhuang Q, Law BE, Chen J, Baldoucchi DD, Cook DR, Oren R, Richardson AD, Wharton S, Ma S et al..  2010.  A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment. 114:576-591.
Xiao J, Ollinger SV, Frolking S, Hurtt GC, Hollinger DY, Davis KJ, Pan Y, Zhang X, Deng F, Chen J et al..  2014.  Data-driven diagnostics of terrestrial carbon dynamics over North America. Agricultural and Forest Meteorology. 197:142-157.
Xia J, A. McGuire D, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S et al..  2017.  Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Biogeosciences. 122(2):430-446.
Xia J, Wang G, Tan G..  2005.  Development of distributed time-variant gain model for nonlinear hydrological systems. Science in China Series D. 48(6):713.
Xi M, Lu D, Gui D, Qi Z, Zhang G.  2017.  Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization. Journal of Hydrology. 544:456-466.